HOMEWORK 3 COMPLEX ANALYSIS

KELLER VANDEBOGERT

1. PROBLEM 1

Proof. Suppose f(z) = " a,z", z € C. Then, by the condition that
F(z+ w) = F(2) (), we find that £(0) = f(0)/(0) = F(0) =1
Since we have that f'(z) = f(z) we can apply induction to find that
f™(z) = f(z) for all positive integers n. Now, since f(0) = 1, this
immediately implies that ap = 1. We can differentiate our series term

by term to find the following:

Z apz" = Z(n + Dayq12"
n=0 n=0

Comparing the coefficients of these series yields the recursion a,,11 =

Qn

n+17?

where ap = 1. By induction we see that the sequence a, = %

satisfies this recurrence. Thus, we have:

f& =35

n=0
Substitute z = z + iy, =, y € R. Then, by applying the Binomial

Theorem:

Date: September 3, 2017.



2 KELLER VANDEBOGERT

(1.1) £ 22 (0 — K]

By Euler’s formula, ¢ = cos(y) + isin(y), so we have:

f(z) = €"(cos(y) + isin(y))

2. PROBLEM 2

Proof. Let f be an arbitrary complex function. Then,

oof 91,0f 10f
t5:5: = Y953 (50 * 75,)
(O L@ 1 8f 18
(2.1) = (a7 Sy i ))
782f 62f7
=2 T =

dyox 1 0y?

Where we have used the fact that % = % for the last step. The
Y Yz

case for 4%% is nearly identical. We have:
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00f ,01,0f 10f
45205 = 455355~ 70y)
O2f 1 0%f 1, 0%f 10%*f
(2.2) =|\535 T~ ——.( —l——.—2>
ox 1 0x0y 1 \Oydxr 10y
0?f  0°f
= Top

3. PROBLEM 3

Proof. This is immediate by the previous problem: Note that for f

holomorphic, % = 0. Thus,
0 0
908 _o_ af
0z 0z
R 0%f _ 0%*f . .
Another way to see this is to note that 5a9y = Byds- Since f is

holomorphic we substitute the Cauchy Riemann equations, and find:

0? 0? 0? 0?
0xdy  Oyox ox?  0y?
O
4. PROBLEM 4
Proof. Suppose we have the lim % = L. Since the sequence |a,| is

just a sequence of real numbers, we use the definition of limit in the

real case. Let € > 0. Then, there is N such that for all n > N,

|an|

1]

—L‘<€

This leads to two strict inequalities: ‘Ja—” < L+eand ‘a—”|1| > L—e.

n—l‘ |an—

Since this inequality holds for any n > N, we find:
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el _ Janl Jausl ol _ oy o
lan] anaffan—s| — lan]
Similarly we have that ||3;|‘ > (L — )" V. Taking nth roots leads to

the following:

|anl® < (L + €)% |ay]|

N 1

1 _N
|an]™ > (L — €)'~ |ay]|"
Now let n — 00, and note that taking limits does not preserve strict

inequality. Since |ax/| is just a fixed constant, the nth root will tend to

1. We have:

lim \anﬁ <L+e

n—oo

lim |an|% >L—¢
n—oo

. . . . 1 . 1
Since € is arbitrary, L < lim, .« |a,|n < L, so lim,,_, |a,|7 = L.

O

5. PROBLEM 5

Proof. By taking the ratio of consecutive terms, we have the following:

n+4 1)z
—( ')n = (n+1)|z|
nlz
We need that this ratio is less than 1 for every positive integer n, so

we have:

1
2| <

Letting n — oo, we find |z| = 0, so our radius of convergence is 0

with convergence only at the point z = 0.
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6. PROBLEM 6

Proof. Again, taking ratios of consecutive terms and setting this less

than 1:

log(n+1)

— 1, so we
logn )

Let n — oco. By L’Hospital’s rule, we see that

are left with |z| < 1, implying our radius of convergence is 1. O

7. PROBLEM 7

Proof. Taking consecutive ratios, we want these to be less than 1 for

all n. We have:

(1+1/n)*(4" + 3n)

rspnee
Let n — oo. Then we see that %% — i. To see this,
rewrite the quantity as % [%ﬂé@iﬁ;i:ﬁ;)] . Then the quantity in brack-

ets clearly tends to 1, giving the answer.

Using this, we see that |z| < 4, so our radius of convergence is 4.

l

8. PROBLEM 8

Proof. We employ Hadamard’s formula:

1
— =1 L/
7 imsup |c,|

n—oo

Where R denotes the radius of convergence. Then, we have:

1 i | 2|2
— = l11m Su
ool Al n (n 4 1)1t/
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With Stirling’s formula, we know n! ~ +/27n (%) . Substituting this

asymptotic, we have:

y e|z|?
— = limsu
R LY 8 (n(n + 1)) /> n
But this limit clearly tends to 0 as n — oo, so we have that 1/R = 0,
so R = oo.

Note that the formula from Problem 4 would not work because every

odd term is equal to 0, making consecutive ratios undefined. 0
9. PROBLEM 9
Proof. Set z = €'*, with ¢ € R. Then, we substitute this into the given

summation:

61n¢)

D

n=1

This sum will converge if and only if both its real and imaginary
components converge. To prove this sum must converge we can use the
following result from elementary analysis:

If a, is a sequence whose series is convergent and b, is a bounded
sequence, then > a,b, is also a convergent series.

Using this we can rewrite our sum as:

2L cos(ng) <= sin(ne)

Since both cosine and sine are bounded above by 1, and >~ # =

%2 converges, we have that the real and imaginary parts of this sum

converge, so the sum itself converges on every point of the unit circle.

O
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10. PROBLEM 10

Proof. Since we are concerned with convergence on the unit circle, we
again substitute z = €. Again we will use another elementary result
from analysis which states the following: If > a,, is a convergent series,
then a,, — 0. Note that the trivial cases ¢ = 0 and ¢ = 7 are clearly
real and divergent, so we assume ¢ € (0,27) — {w}. Then, by splitting

into real and imaginary parts we have the following series:

Z ncos(ng) + i Z nsin(n)

Examining nth ternrglls, we have nsir?(_nlgb) and n cos(ng). Since ¢ # 0
or m, the sequence nsin(n¢) will never be zero and in fact oscillates
arbitrarily (and likewise for n cos(n¢) when ¢ # 7/2 or 37/2). Thus,
by the result stated, its series cannot be convergent because the nth
term of either sequence cannot simultaneously tend to 0, so we are

done.



