HOMEWORK 3 COMPLEX ANALYSIS

KELLER VANDEBOGERT

1. Problem 1

Proof. Suppose $f(z) = \sum_{n=0}^{\infty} a_n z^n$, $z \in \mathbb{C}$. Then, by the condition that f(z+w) = f(z)f(w), we find that $f(0) = f(0)f(0) \implies f(0) = 1$.

Since we have that f'(z) = f(z) we can apply induction to find that $f^{(n)}(z) = f(z)$ for all positive integers n. Now, since f(0) = 1, this immediately implies that $a_0 = 1$. We can differentiate our series term by term to find the following:

$$\sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} (n+1)a_{n+1} z^n$$

Comparing the coefficients of these series yields the recursion $a_{n+1} = \frac{a_n}{n+1}$, where $a_0 = 1$. By induction we see that the sequence $a_n = \frac{1}{n!}$ satisfies this recurrence. Thus, we have:

$$f(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Substitute z = x + iy, $x, y \in \mathbb{R}$. Then, by applying the Binomial Theorem:

Date: September 3, 2017.

(1.1)

$$f(z) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} {n \choose k} \frac{x^{k} (iy)^{n-k}}{n!}$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{x^{k} (iy)^{n-k}}{k! (n-k)!}$$

$$= \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} \frac{x^{k} (iy)^{n-k}}{k! (n-k)!}$$

$$= \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \frac{x^{k} (iy)^{n}}{k! n!}$$

$$= \left(\sum_{k=0}^{\infty} \frac{x^{k}}{k!}\right) \left(\sum_{n=0}^{\infty} \frac{(iy)^{n}}{n!}\right)$$

$$= e^{x} e^{iy}$$

By Euler's formula, $e^{iy} = \cos(y) + i\sin(y)$, so we have:

$$f(z) = e^x \big(\cos(y) + i\sin(y)\big)$$

2. Problem 2

Proof. Let f be an arbitrary complex function. Then,

$$4\frac{\partial}{\partial\bar{z}}\frac{\partial f}{\partial z} = 4\frac{\partial}{\partial\bar{z}}\frac{1}{2}\left(\frac{\partial f}{\partial x} + \frac{1}{i}\frac{\partial f}{\partial y}\right)$$

$$= \left(\frac{\partial^2 f}{\partial x^2} - \frac{1}{i}\frac{\partial^2 f}{\partial x \partial y} + \frac{1}{i}\left(\frac{\partial^2 f}{\partial y \partial x} - \frac{1}{i}\frac{\partial^2 f}{\partial y^2}\right)\right)$$

$$= \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \Delta f$$

Where we have used the fact that $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ for the last step. The case for $4\frac{\partial}{\partial z}\frac{\partial f}{\partial \overline{z}}$ is nearly identical. We have:

$$4\frac{\partial}{\partial z}\frac{\partial f}{\partial \bar{z}} = 4\frac{\partial}{\partial z}\frac{1}{2}\left(\frac{\partial f}{\partial x} - \frac{1}{i}\frac{\partial f}{\partial y}\right)$$

(2.2)
$$= \left(\frac{\partial^2 f}{\partial x^2} + \frac{1}{i}\frac{\partial^2 f}{\partial x \partial y} - \frac{1}{i}\left(\frac{\partial^2 f}{\partial y \partial x} + \frac{1}{i}\frac{\partial^2 f}{\partial y^2}\right)\right)$$
$$= \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \Delta f$$

3. Problem 3

Proof. This is immediate by the previous problem: Note that for f holomorphic, $\frac{\partial f}{\partial \bar{z}} = 0$. Thus,

$$4\frac{\partial}{\partial z}\frac{\partial f}{\partial \bar{z}}=0=\Delta f$$

Another way to see this is to note that $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$. Since f is holomorphic we substitute the Cauchy Riemann equations, and find:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} \implies \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

4. Problem 4

Proof. Suppose we have the $\lim \frac{|a_{n+1}|}{|a_n|} = L$. Since the sequence $|a_n|$ is just a sequence of real numbers, we use the definition of limit in the real case. Let $\epsilon > 0$. Then, there is N such that for all $n \ge N$,

$$\left|\frac{|a_n|}{|a_{n-1}|} - L\right| < \epsilon$$

This leads to two strict inequalities: $\frac{|a_n|}{|a_{n-1}|} < L + \epsilon$ and $\frac{|a_n|}{|a_{n-1}|} > L - \epsilon$. Since this inequality holds for any $n \ge N$, we find:

KELLER VANDEBOGERT

 $\frac{|a_n|}{|a_N|} = \frac{|a_n|}{|a_{n-1}|} \frac{|a_{n-1}|}{|a_{n-2}|} \dots \frac{|a_{N+1}|}{|a_N|} < (L+\epsilon)^{n-N}$ Similarly we have that $\frac{|a_n|}{|a_N|} > (L-\epsilon)^{n-N}$. Taking *n*th roots leads to the following:

$$|a_n|^{\frac{1}{n}} < (L+\epsilon)^{1-\frac{N}{n}} |a_N|^{\frac{1}{n}}$$
$$|a_n|^{\frac{1}{n}} > (L-\epsilon)^{1-\frac{N}{n}} |a_N|^{\frac{1}{n}}$$

Now let $n \to \infty$, and note that taking limits does not preserve strict inequality. Since $|a_N|$ is just a fixed constant, the *n*th root will tend to 1. We have:

$$\lim_{n \to \infty} |a_n|^{\frac{1}{n}} \leq L + \epsilon$$
$$\lim_{n \to \infty} |a_n|^{\frac{1}{n}} \geq L - \epsilon$$
Since ϵ is arbitrary, $L \leq \lim_{n \to \infty} |a_n|^{\frac{1}{n}} \leq L$, so $\lim_{n \to \infty} |a_n|^{\frac{1}{n}} = L$.

5. Problem 5

Proof. By taking the ratio of consecutive terms, we have the following:

$$\left|\frac{(n+1)!z^{n+1}}{n!z^n}\right| = (n+1)|z|$$

We need that this ratio is less than 1 for every positive integer n, so we have:

$$|z| < \frac{1}{n+1}$$

Letting $n \to \infty$, we find |z| = 0, so our radius of convergence is 0 with convergence only at the point z = 0.

4

6. Problem 6

Proof. Again, taking ratios of consecutive terms and setting this less than 1:

$$\left(\frac{\log(n+1)}{\log n}\right)^2 |z| < 1$$

Let $n \to \infty$. By L'Hospital's rule, we see that $\frac{\log(n+1)}{\log n} \to 1$, so we are left with |z| < 1, implying our radius of convergence is 1.

7. Problem 7

Proof. Taking consecutive ratios, we want these to be less than 1 for all n. We have:

$$\frac{(1+1/n)^2(4^n+3n)}{4^{n+1}+3n+3}|z|<1$$

Let $n \to \infty$. Then we see that $\frac{(1+1/n)^2(4^n+3n)}{4^{n+1}+3n+3} \to \frac{1}{4}$. To see this, rewrite the quantity as $\frac{1}{4} \left[\frac{(1+1/n)^2(1+3n/4^n)}{(1+3(n+1)/4^{n+1})} \right]$. Then the quantity in brackets clearly tends to 1, giving the answer.

Using this, we see that |z| < 4, so our radius of convergence is 4.

8. Problem 8

Proof. We employ Hadamard's formula:

$$\frac{1}{R} = \limsup_{n \to \infty} |c_n|^{1/n}$$

Where R denotes the radius of convergence. Then, we have:

$$\frac{1}{R} = \limsup_{n \to \infty} \frac{|z|^2}{4(n!)^{1/n}(n+r)!^{1/n}}$$

With Stirling's formula, we know $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$. Substituting this asymptotic, we have:

$$\frac{1}{R} = \limsup_{n \to \infty} \frac{e|z|^2}{8\pi (n(n+r))^{1/2n} n}$$

But this limit clearly tends to 0 as $n \to \infty$, so we have that 1/R = 0, so $R = \infty$.

Note that the formula from Problem 4 would not work because every odd term is equal to 0, making consecutive ratios undefined. \Box

9. Problem 9

Proof. Set $z = e^{i\phi}$, with $\phi \in \mathbb{R}$. Then, we substitute this into the given summation:

$$\sum_{n=1}^{\infty} \frac{e^{in\phi}}{n^2}$$

This sum will converge if and only if both its real and imaginary components converge. To prove this sum must converge we can use the following result from elementary analysis:

If a_n is a sequence whose series is convergent and b_n is a bounded sequence, then $\sum_{n=0}^{\infty} a_n b_n$ is also a convergent series.

Using this we can rewrite our sum as:

$$\sum_{n=1}^{\infty} \frac{\cos(n\phi)}{n^2} + i \sum_{n=1}^{\infty} \frac{\sin(n\phi)}{n^2}$$

Since both cosine and sine are bounded above by 1, and $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ converges, we have that the real and imaginary parts of this sum converge, so the sum itself converges on every point of the unit circle.

10. Problem 10

Proof. Since we are concerned with convergence on the unit circle, we again substitute $z = e^{i\phi}$. Again we will use another elementary result from analysis which states the following: If $\sum a_n$ is a convergent series, then $a_n \to 0$. Note that the trivial cases $\phi = 0$ and $\phi = \pi$ are clearly real and divergent, so we assume $\phi \in (0, 2\pi) - {\pi}$. Then, by splitting into real and imaginary parts we have the following series:

$$\sum_{n=1}^{\infty} n\cos(n\phi) + i\sum_{n=1}^{\infty} n\sin(n\phi)$$

Examining *n*th terms, we have $n \sin(n\phi)$ and $n \cos(n\phi)$. Since $\phi \neq 0$ or π , the sequence $n \sin(n\phi)$ will never be zero and in fact oscillates arbitrarily (and likewise for $n \cos(n\phi)$ when $\phi \neq \pi/2$ or $3\pi/2$). Thus, by the result stated, its series cannot be convergent because the *n*th term of either sequence cannot simultaneously tend to 0, so we are done.