
HOMEWORK 3 COMPLEX ANALYSIS

KELLER VANDEBOGERT

1. Problem 1

Proof. Suppose f(z) =
∑∞

n=0 anz
n, z ∈ C. Then, by the condition that

f(z + w) = f(z)f(w), we find that f(0) = f(0)f(0) =⇒ f(0) = 1.

Since we have that f ′(z) = f(z) we can apply induction to find that

f (n)(z) = f(z) for all positive integers n. Now, since f(0) = 1, this

immediately implies that a0 = 1. We can differentiate our series term

by term to find the following:

∞∑
n=0

anz
n =

∞∑
n=0

(n+ 1)an+1z
n

Comparing the coefficients of these series yields the recursion an+1 =

an
n+1

, where a0 = 1. By induction we see that the sequence an = 1
n!

satisfies this recurrence. Thus, we have:

f(z) =
∞∑
n=0

zn

n!

Substitute z = x + iy, x, y ∈ R. Then, by applying the Binomial

Theorem:

Date: September 3, 2017.
1



2 KELLER VANDEBOGERT

f(z) =
∞∑
n=0

n∑
k=0

(
n

k

)
xk(iy)n−k

n!

=
∞∑
n=0

n∑
k=0

xk(iy)n−k

k!(n− k)!

=
∞∑
k=0

∞∑
n=k

xk(iy)n−k

k!(n− k)!

=
∞∑
k=0

∞∑
n=0

xk(iy)n

k!n!

=
( ∞∑
k=0

xk

k!

)( ∞∑
n=0

(iy)n

n!

)
= exeiy

(1.1)

By Euler’s formula, eiy = cos(y) + i sin(y), so we have:

f(z) = ex
(

cos(y) + i sin(y)
)

�

2. Problem 2

Proof. Let f be an arbitrary complex function. Then,

4
∂

∂z̄

∂f

∂z
= 4

∂

∂z̄

1

2

(∂f
∂x

+
1

i

∂f

∂y

)
=

(
∂2f

∂x2
− 1

i

∂2f

∂x∂y
+

1

i

( ∂2f

∂y∂x
− 1

i

∂2f

∂y2

))
=
∂2f

∂x2
+
∂2f

∂y2
= ∆f

(2.1)

Where we have used the fact that ∂2f
∂x∂y

= ∂2f
∂y∂x

for the last step. The

case for 4 ∂
∂z

∂f
∂z̄

is nearly identical. We have:
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4
∂

∂z

∂f

∂z̄
= 4

∂

∂z

1

2

(∂f
∂x
− 1

i

∂f

∂y

)
=

(
∂2f

∂x2
+

1

i

∂2f

∂x∂y
− 1

i

( ∂2f

∂y∂x
+

1

i

∂2f

∂y2

))
=
∂2f

∂x2
+
∂2f

∂y2
= ∆f

(2.2)

�

3. Problem 3

Proof. This is immediate by the previous problem: Note that for f

holomorphic, ∂f
∂z̄

= 0. Thus,

4
∂

∂z

∂f

∂z̄
= 0 = ∆f

Another way to see this is to note that ∂2f
∂x∂y

= ∂2f
∂y∂x

. Since f is

holomorphic we substitute the Cauchy Riemann equations, and find:

∂2f

∂x∂y
=

∂2f

∂y∂x
=⇒ ∂2f

∂x2
+
∂2f

∂y2
= 0

�

4. Problem 4

Proof. Suppose we have the lim |an+1|
|an| = L. Since the sequence |an| is

just a sequence of real numbers, we use the definition of limit in the

real case. Let ε > 0. Then, there is N such that for all n ≥ N ,

∣∣∣ |an||an−1|
− L

∣∣∣ < ε

This leads to two strict inequalities: |an|
|an−1| < L+ε and |an|

|an−1| > L−ε.

Since this inequality holds for any n ≥ N , we find:
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|an|
|aN |

=
|an|
|an−1|

|an−1|
|an−2|

. . .
|aN+1|
|aN |

< (L+ ε)n−N

Similarly we have that |an||aN |
> (L− ε)n−N . Taking nth roots leads to

the following:

|an|
1
n < (L+ ε)1−N

n |aN |
1
n

|an|
1
n > (L− ε)1−N

n |aN |
1
n

Now let n→∞, and note that taking limits does not preserve strict

inequality. Since |aN | is just a fixed constant, the nth root will tend to

1. We have:

lim
n→∞

|an|
1
n ≤ L+ ε

lim
n→∞

|an|
1
n ≥ L− ε

Since ε is arbitrary, L ≤ limn→∞ |an|
1
n ≤ L, so limn→∞ |an|

1
n = L.

�

5. Problem 5

Proof. By taking the ratio of consecutive terms, we have the following:

∣∣∣(n+ 1)!zn+1

n!zn

∣∣∣ = (n+ 1)|z|

We need that this ratio is less than 1 for every positive integer n, so

we have:

|z| < 1

n+ 1

Letting n → ∞, we find |z| = 0, so our radius of convergence is 0

with convergence only at the point z = 0.

�
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6. Problem 6

Proof. Again, taking ratios of consecutive terms and setting this less

than 1:

(
log(n+ 1)

log n

)2

|z| < 1

Let n → ∞. By L’Hospital’s rule, we see that log(n+1)
logn

→ 1, so we

are left with |z| < 1, implying our radius of convergence is 1. �

7. Problem 7

Proof. Taking consecutive ratios, we want these to be less than 1 for

all n. We have:

(1 + 1/n)2(4n + 3n)

4n+1 + 3n+ 3
|z| < 1

Let n → ∞. Then we see that (1+1/n)2(4n+3n)
4n+1+3n+3

→ 1
4
. To see this,

rewrite the quantity as 1
4

[
(1+1/n)2(1+3n/4n)
(1+3(n+1)/4n+1)

]
. Then the quantity in brack-

ets clearly tends to 1, giving the answer.

Using this, we see that |z| < 4, so our radius of convergence is 4.

�

8. Problem 8

Proof. We employ Hadamard’s formula:

1

R
= lim sup

n→∞
|cn|1/n

Where R denotes the radius of convergence. Then, we have:

1

R
= lim sup

n→∞

|z|2

4(n!)1/n(n+ r)!1/n
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With Stirling’s formula, we know n! ∼
√

2πn
(
n
e

)n
. Substituting this

asymptotic, we have:

1

R
= lim sup

n→∞

e|z|2

8π(n(n+ r))1/2nn

But this limit clearly tends to 0 as n→∞, so we have that 1/R = 0,

so R =∞.

Note that the formula from Problem 4 would not work because every

odd term is equal to 0, making consecutive ratios undefined. �

9. Problem 9

Proof. Set z = eiφ, with φ ∈ R. Then, we substitute this into the given

summation:

∞∑
n=1

einφ

n2

This sum will converge if and only if both its real and imaginary

components converge. To prove this sum must converge we can use the

following result from elementary analysis:

If an is a sequence whose series is convergent and bn is a bounded

sequence, then
∑∞

n=0 anbn is also a convergent series.

Using this we can rewrite our sum as:

∞∑
n=1

cos(nφ)

n2
+ i

∞∑
n=1

sin(nφ)

n2

Since both cosine and sine are bounded above by 1, and
∑∞

n=1
1
n2 =

π2

6
converges, we have that the real and imaginary parts of this sum

converge, so the sum itself converges on every point of the unit circle.

�
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10. Problem 10

Proof. Since we are concerned with convergence on the unit circle, we

again substitute z = eiφ. Again we will use another elementary result

from analysis which states the following: If
∑
an is a convergent series,

then an → 0. Note that the trivial cases φ = 0 and φ = π are clearly

real and divergent, so we assume φ ∈ (0, 2π)−{π}. Then, by splitting

into real and imaginary parts we have the following series:

∞∑
n=1

n cos(nφ) + i
∞∑
n=1

n sin(nφ)

Examining nth terms, we have n sin(nφ) and n cos(nφ). Since φ 6= 0

or π, the sequence n sin(nφ) will never be zero and in fact oscillates

arbitrarily (and likewise for n cos(nφ) when φ 6= π/2 or 3π/2). Thus,

by the result stated, its series cannot be convergent because the nth

term of either sequence cannot simultaneously tend to 0, so we are

done.

�


